This has been discussed here before. Don't delve into it too much. Unless you are riding your bicycle on a diamond plate drum. Then maybe it's useful to you.
www.velonews.com
As for the study you cite, the fact that Bicycle Rolling Resistance’s test setup has no damping means that its results must be taken with a huge grain of salt. They are simply inaccurate at higher pressures on rough surfaces. I explain here why damping in the test fixture matters. Bicycle Rolling Resistance’s tests always show an ever-decreasing rolling resistance with increased tire pressure, because there is a static load on its test wheel.
In real life, however, once the tire is hard enough that it bounces along, the damping of the rider causes the rolling resistance to increase steeply due to impedance. Our Paris-Roubaix rolling resistance tests at Wheel Energy Oy in Finland showed this, and you’ll see more of that in my upcoming test of gravel-tire rolling resistance. Without damping, the tire can skip across the diamond plate on Bicycle Rolling Resistance’s test drum, thus not revealing the losses due to impedance.

Technical FAQ: Tire size and rolling resistance
How to size tires to rims and more discussion about tire hysteresis and aerodynamic drag.

In real life, however, once the tire is hard enough that it bounces along, the damping of the rider causes the rolling resistance to increase steeply due to impedance. Our Paris-Roubaix rolling resistance tests at Wheel Energy Oy in Finland showed this, and you’ll see more of that in my upcoming test of gravel-tire rolling resistance. Without damping, the tire can skip across the diamond plate on Bicycle Rolling Resistance’s test drum, thus not revealing the losses due to impedance.